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ABSTRACT 

An experimental study of flows over bedforms was conducted in two alluvial river 
systems; the Kankakee River and the Missouri River with the purposes of 1) evaluating 
the applicability of laboratory scale results to field-scale problems, 2) characterizing the 
spatially averaged (longitudinal) mean velocity profile to evaluate available velocity-
distribution models, and 3) characterizing the spatially averaged Reynolds stress 
distribution and evaluating available shear-partitioning models.  Three separate data sets 
were collected (two from the Missouri and one from the Kankakee Rivers) with detailed 
velocity data measured at numerous locations along bedforms. These data indicated flow 
separation in one of the Missouri River data sets. Local and spatially averaged velocity 
distributions were logarithmic for all data sets.   
 
The large-river-scale data reflect similar flow characteristics to those of laboratory-scale 
flows.  However, it is obvious that field-scale flows sometimes present bedform 
geometries that cannot be classified as equilibrium dunes, which are present in the 
laboratory-scale flume experiments.  Also, at times, these bedform geometries could not 
be classified easily into other categories, such as ripples or bars.   The wavelike response 
of the flow in the outer region, with velocity decreasing throughout the flow depth over 
bedform troughs, and vice-versa over bedform crests, is present in both field- and 
laboratory-scale flows.  Turbulence production may be more appreciable in the outer 
region of a large river flow than for flume flows.  Measured laboratory- and field-scale 
Reynolds stress distributions appear to support this conjecture.  In general, the Reynolds 
stress distributions at laboratory- and field-scales are similar, with the both flow scales 
having the highest shear stresses in the zones of flow separation and along the shear 
layer.  
 
The velocity-distribution models of Smith and McLean (1977) and Nelson and Smith 
(1989A) were evaluated using the field data from this study, as well as the field data of 
Smith and McLean (1977) and Kostascuk and Villard (1996).  The Smith and McLean 
and Nelson and Smith models performed adequately when each was applied according to 
bedform type, with the Smith and McLean model working well for equilibrium dunes and 
the Nelson and Smith model working well for flows where form resistance is minimal 
(for example, elongated bedforms, gradual lee slopes, etc.).  
 
In an effort to provide a simple field approach for estimating the reachwise spatially 
averaged vertical-velocity profile, the standard velocity-defect model also was evaluated, 
accounting for the wake effect through knowledge of the bulk Richardson number.   The 
velocity-defect model mean flow velocities were within 2% of the measured values and 
estimated spatially averaged point velocities were within 10% for z/H>0.1.  If sediment 
concentration cannot be estimated, the model performance decreases slightly, with 
vertically averaged mean velocity still accurate to within 2% for all but one data set 
(+3.7%), but point-velocity accuracies decreasing to +/- 10% for z/H>0.3 . 
 
Shear partition models of Einstein and Nelson-Smith were evaluated with the field data 
collected in this research.  Einstein’s method had an absolute average percent error of 

 iv



11.3%, while the Nelson-Smith method had an absolute average percent error of 22.2% 
when the smaller bedforms were used as the geometry in the Nelson-Smith method.   The 
Nelson-Smith method requires the estimation of bedform geometry.  The Einstein method 
is recommended over that of the Nelson-Smith method based on both the better relative 
error estimates for the Einstein method and the need for bedform geometry in the Nelson-
Smith method.   
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“Field studies with detailed measurements of not only dune characteristics but 

also flow and transport are valuable and daunting for the same reason:  they 

indicate the complexity of the real problem, which, together with practical 

constraints on field measurements, make more difficult the analysis and 

interpretation of the data.”  ASCE Task Committee on Flow and Transport over 

Dunes (2002) 

 

 

“From a practical point of view, it is very difficult to measure in the proximity of 

the bed”  Garcia, 1989, p 7.11 

 
“I had occasion to descend to the bottom in a current so swift as to require 

extraordinary means to sink the bell…The sand was drifting like a dense 

snowstorm at the bottom…At sixty feet below the surface I had found the bed of 

the river, for at least three feet in depth, a moving mass and so unstable that, in 

endeavoring to find a footing on it beneath my bell, my feet penetrated through it 

until I could feel, although standing erect, the sand rushing past my hands, driven 

by a current apparently as rapid as that on the surface.  I could discover the sand 

in motion at least two feet below the surface of the bottom, and moving with a 

velocity diminishing in proportion to its depth.”  James Eads, circa 1842, 

discussing his salvage business on the Mississippi River and quoted in Rising 

Tide by John M. Barry (page 26)
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